Spillover Rate from Pd to Al₂O₃ In previous studies we found that CO and H₂ coadsorbed on Ni/Al₂O₃ can spill over from the Ni to form a CH₃O species on the Al₂O₃ support (I). Because the CH₃O was not hydrogenated to CH₄ as fast as CO that was adsorbed on Ni, two distinct CH₄ peaks were observed during temperature-programmed reaction (TPR). Thus, the area of the high-temperature CH₄ peak, which was due to CH₃O hydrogenation, gave a direct measure of how much CH₃O formed during TPR. The amount of spillover was thus readily measured with TPR, and changes in heating rate (I, 2) were used to study the rate of spillover. On Pd/Al_2O_3 (3), Pt/Al_2O_3 (4, 5), and Pt/TiO₂ (6) a similar process occurs, but the rate of CH₃O hydrogenation is faster than the rate of CO hydrogenation on catalysts made from these less-active methanation metals. Thus, during TPR experiments, spillover created CH₃O on the Al₂O₃ or TiO₂ surfaces, and as this CH₃O was hydrogenated to CH₄, sites on the support were made available for more spillover. However, in contrast to the TPR experiments on Ni/Al₂O₃, two distinct CH₄ peaks could not be distinguished on Pd/ Al₂O₃. This may be because the rate of spillover is fast relative to the rate of CO hydrogenation; Palazov et al. (7) observed rapid spillover of CH₃O on Pd/Al₂O₃ with infrared spectroscopy. To measure the rate of spillover on Pd/Al₂O₃, we used interrupted TPR and isotope exchange before a complete TPR experiment. In this approach, ¹²CO was adsorbed at 300 K and the catalyst temperature was then raised in H₂ flow to facilitate spill- over. The heating ramp was interrupted before a significant amount of CH₄ formed, and the sample was quickly cooled to 300 K. Then the catalyst was exposed to ¹³CO to displace any ¹²CO that remained on the Pd surface. At room temperature, gas phase CO readily exchanges with adsorbed CO on Pd (3). We have also observed previously that gas phase CO does not exchange with CH_3O on Al_2O_3 of Ni/Al_2O_3 (8). Thus, any ¹²CO remaining on the catalyst after exchange was assumed to be present as ¹²CH₃O on the Al₂O₃ surface. The amount of ¹²CH₄ that formed during the subsequent TPR was thus a measure of how much ¹²CO had spilled over to the Al₂O₃ since all the adsorbed ¹²CH₃O was hydrogenated to ¹²CH₄. A series of TPR experiments with different interruption temperatures yielded a TPR spectrum for spillover and an estimate of the activation energy for spillover. The temperature-programmed reaction experiments were carried out at ambient pressure in a flow system. The apparatus and procedures have been described previously (1, 3, 9). The following experimental steps were used: - (1) Adsorption. ¹²CO was adsorbed on Pd/Al₂O₃ at 300 K for 15 min to obtain saturation coverage in He flow. Under these conditions essentially all the CO is adsorbed on the Pd surface. - (2) Interrupted TPR. The catalyst temperature was raised at a rate of 1 K/s in H₂ flow at ambient pressure, but heating was stopped at a preselected temperature and the catalyst was rapidly cooled to 300 K before a significant amount of CH₄ formed. - (3) Isotope exchange. The catalyst was Fig. 1. CO and CH₄ TPR spectra following CO adsorption at 300 K in He for 15 min on 3.7% Pd/Al₂O₃. then exposed to ¹³CO at 300 K for 15 min to replace ¹²CO adsorbed on the Pd by ¹³CO. (4) TPR. After exchange, the catalyst temperature was raised from 300 to 773 K in ambient pressure H₂ at a rate of 1 K/s, and the methane (¹³CH₄, ¹²CH₄) and carbon monoxide (¹³CO, ¹²CO) products were detected with a quadrupole mass spectrometer, which was located immediately downstream from the reactor. A computer allowed multiple mass peaks to be detected simultaneously. Mass 15 was used to detect ¹²CH₄ and mass 17 to detect ¹³CH₄, and mass 15 was corrected for cracking from ¹³CH₄. Small amounts of CO₂ also formed (3). The 3.7% Pd/Al₂O₃ catalyst was prepared by impregnation to incipient wetness of aqueous H₂PdCl₄ onto Kaiser A-201 Al₂O₃. The procedure was described previously (3) and is essentially the same as that used by Palazov *et al.* (7). The final reduction temperature was 773 K. At the beginning of the experiments, the reduced catalyst was pretreated for 2 h at 773 K in ambient pressure H_2 flow. To maintain a clean surface, the catalyst was held in H_2 at 773 K for 10 min at the completion of each TPR experiment. Figure 1 shows TPR spectra for ¹²CO adsorbed at 300 K for an experiment where no interruption or ¹³CO exchange was carried out. As reported previously (3), almost all the CO adsorbed at 300 K reacted to form CH₄; only a small amount of unreacted CO desorbed at low temperature. Methane started to form at 425 K and the peak temperature was 550 K. The CH₄ spectrum appears to consist of two overlapping peaks, with a small peak centered near 475 K. However, neither variations in heating rate nor H₂ pressure was able to distinguish two CH₄ peaks. The rate of CH₄ formation on Pd/Al₂O₃ is much faster than that reported for Pd/SiO₂ (10). When the catalyst was exposed to ¹³CO at 300 K for 15 min after ¹²CO adsorption at 300 K, almost no ¹²CH₄ was detected. That is, essentially all the ¹²CO, which was adsorbed on Pd, was displaced by ¹³CO, and thus 15 min of ¹³CO exposure was sufficient time for almost complete exchange in our experiments. A series of ¹²CH₄ spectra obtained for TPR experiments, after interrupted TPR to temperatures from 350 to 450 K and subsequent ¹³CO exchange (as described previously) is shown in Fig. 2. As successively higher interruption temperatures were used before ¹³CO exposure, increasing amounts of ¹²CH₄ were observed during the subsequent TPR because more ¹²CO spilled over onto Al₂O₃ as interruption temperature increased. The ¹²CH₃O that formed by spill- FIG. 2. ¹²CH₄ TPR spectra following ¹²CO adsorption at 300 K in He, interrupted TPR to various temperatures, and ¹³CO exchange at 300 K in He. The interruption temperatures were: (a) 350 K, (b) 375 K, (c) 400 K, (d) 425 K, and (e) 450 K. Curve (f) is the ¹²CH₄ TPR spectrum following ¹²CO adsorption at 300 K in He without interrupted TPR or isotope exchange. over did not exchange with gas phase ¹³CO but it was hydrogenated during the subsequent TPR. The amount of ¹³CH₄ that formed during each of the TPR experiments was approximately the same because the ¹³CH₄ amount corresponds to the amount of ¹³CO that adsorbed on Pd at 300 K. The presence of ¹²CH₃O on Al₂O₃ at these coverages did not significantly affect the hydrogenation rate of ¹³CO, so the ¹³CH₄ spectra were quite similar to the ¹²CH₄ spectrum in Fig. 1. The ¹³CO is also assumed to hydrogenate by first spilling over onto the Al₂O₃; because of the large area available on the Al₂O₃, the rate of ¹³CO spillover was not significantly inhibited by the presence of ¹²CH₃O. Thus the total amount of methane (12CH4 and 13CH4) formed during these TPR experiments after interrupted TPR was larger than that seen in Fig. 1. For example, for the TPR experiment shown in Fig. 2e, the total amount of methane was 1.8 times that in Fig. 1. The amount of ¹²CH₄ formed in Fig. 2e shows that 80% of the ¹²CO spilled over onto Al₂O₃ during the interrupted TPR to 450 K; very little was lost to the gas phase as ¹²CO or ¹²CH₄. The 20% of the originally adsorbed ¹²CO that remained on the Pd was displaced by ¹³CO during the exchange step. This means that during a normal TPR following CO adsorption at 300 K (Fig. 1), only 20% of the CO remains on Pd by 450 K. Since spillover continues above 450 K, essentially all the CO is hydrogenated after first spilling over onto the Al₂O₃ to form CH₃O. The amounts of $^{12}\text{CH}_4$ in Fig. 2 are the amounts that spilled over. The concentrations of ^{12}CO remaining on the Pd surface after the interrupted TPR experiments were obtained by the differences between the amounts of $^{12}\text{CH}_4$ in Fig. 2 and the amount of $^{12}\text{CH}_4$ formed during a normal TPR (Fig. 1). For example, following an interrupted TPR to 400 K and ^{13}CO exchange, 13.9 μ mol $^{12}\text{CH}_4$ /g catalyst formed during the subsequent TPR. Since 49 μ mol $^{12}\text{CH}_4$ /g catalyst formed as shown in Fig. 1, this means that 35.1 μ mol ^{12}CO /g catalyst remained *on Pd* after the interrupted TPR to 400 K. These 35.1 µmol ¹²CO/g catalyst were displaced by ¹³CO during the exchange step. A plot of the concentration of ¹²CO remaining on Pd after the interrupted TPR (C_{CO}) versus elapsed time during the interrupted TPR was smooth, and the negative of the slope of that plot $(-dC_{CO}/dt)$ was used to estimate the rate of spillover at that ¹²CO concentration and temperature. Table 1 lists the concentrations and rates. These rates were used to obtain an activation energy by assuming that spillover was first order in C_{CO} . The resulting Arrhenius plot in Fig. 3 gave an activation energy of 43 \pm 5.5 kJ/mol (99% confidence limits) and a preexponential factor of 5.2×10^3 s⁻¹. For comparison, the leading edge analysis (11, 12) was used to estimate an activation energy of 125 kJ/mol for ¹²CH₃O hydrogenation on Al₂O₃. The activation energy and preexponential factor for spillover were used to generate a continuous plot of spillover rate versus temperature by numerical intergration. This plot (dashed line in Fig. 4) shows that CO is essentially completely removed from Pd by 500 K during a standard TPR. The spillover curve shows good agreement with the rates measured from the concentration versus time plot (points in Fig. 4). The area under the dashed curve, up to a given temperature, corresponds to the amount of spillover for a given interruption temperature (last column Fig. 3. Arrhenius plot of $\ln \{(-dC_{CO}/dt)/C_{CO}\}$ versus inverse interruption temperature. | TABLE 1 | | | | | | |--|--|--|--|--|--| | CO Surface Coverage on Pd and Spillover Rate | | | | | | | Interruption
temperature
(K) | ¹² CH ₄ amount
from Fig. 2
(μmol/g catalyst) | $C_{\rm CO}$ (μ mol/g catalyst) | $-\frac{dC_{\rm CO}}{dt}$ (μ mol/g catalyst/s) | ¹² CH ₄ amount
from Fig. 4
(μmol/g catalyst) | |------------------------------------|--|--------------------------------------|---|--| | 300 | 0 | 49.0 | _ | 0 | | 350 | 3.6 | 45.5 | 0.09 | 1.9 | | 375 | 6.0 | 43.0 | 0.23 | 5.9 | | 400 | 13.9 | 35.1 | 0.43 | 14.3 | | 425 | 27.4 | 21.6 | 0.54 | 27.7 | | 450 | 40.8 | 8.2 | _ | 41.1 | in Table 1) and this shows good agreement with the measured amounts. The amount of spillover during the cool-down period, although small compared to that during the temperature rise, may introduce some error into the measurements. Figure 4 shows that the spillover rate is faster than the hydrogenation rate until 475 K, at which point not much CO is left to spillover. Thus, only one CH₄ peak was seen during TPR because almost all the CO on Pd had spilled over onto Al₂O₃. These TPR results indicate that CH₃O hydrogenation might play an important role during steady-state methanation on Pd/Al₂O₃. However, the difference in the H₂/CO ratio between TPR and steady- FIG. 4. The spillover rate during TPR (dashed line) is compared to the methanation rate during TPR (solid line). The solid points correspond to the rates measured from the concentration versus time curves. state experiments could significantly affect the surface processes. These experiments do not provide any information on how the CH₃O is hydrogenated. Hydrogen to hydrogenate the CH₃O could spill over onto the Pd or the hydrogenation could occur at the Pd-Al₂O₃ interface. Spillover to form CH₃O on Al₂O₃ from CO and H₂ on Pd is fast relative to CH₃O or CO hydrogenation below 475 K. An activation energy for spillover of 43 kJ/mol was estimated. Because the activation energy for methanation is higher, at higher temperatures, CH₃O hydrogenation is expected to be faster than spillover. Interrupted TPR combined with isotope exchange is an effective technique for studying the spillover process. ## ACKNOWLEDGMENT We gratefully acknowledge support by NSF Grant CBT-8616494. ## REFERENCES - Glugla, P. G., Bailey, K. M., and Falconer, J. L., J. Phys. Chem. 92, 4474 (1988). - Flesner, R. L., Fitzgerrell, A. R. and Falconer, J. L., unpublished data. - Hsiao, H. C., and J. L. Falconer, J. Catal. 132, 145 (1991). - Robbins, J. L., and Marucchi-Sous, E., J. Phys. Chem. 93, 2885 (1989). - 5. Flesner, R. L., and Falconer, J. L., in preparation. - 6. Mao, T-F., and Falconer, J. L., J. Catal. 123, 443 (1990). - Palazov, A., Kadinov, G., Bonev, C. H., and Shopov, D., J. Catal. 74, 44 (1982). - Chen, B., Falconer, J. L., and Chang, L., J. Catal. 127, 732 (1991). - Schwarz, J. A., and Falconer, J. L., Catal. Today 1 (1990). - 10. Rieck, J., and Bell, A. T., J. Catal. 96, 88 (1985). - Habenschaden, E., and Küppers, J., Surf. Sci. 138, L147 (1987). de Jong, A. M., and Niemantserdriet, J. W., Surf. Sci. 233, 355 (1990). ## Baoshu Chen John L. Falconer Department of Chemical Engineering University of Colorado Boulder, Colorado 80309-0424 Received June 24, 1991; revised October 31, 1991